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Stochastic dilations of the Bloch equations in boson and 
fermion noise 

David Applebaumt 
Dipartimento di Matematica, I1 Universiti degli Studi di Roma, Via Orazio Raimondo, 
00173 La Romanina, Roma, Italy 

Received 22 April 1985 

Abstract. Using the techniques of quantum stochastic calculus, we construct dilations of 
the Bloch equations into boson and fermion ‘noise baths’. Relaxation times and equilibrium 
values are computed in terms of the stochastic coupling parameters at different temperatures. 
The most general dilation of the standard form of the equations into a combination of 
boson and fermion noise is described using classical Brownian motion, the Clifford process 
and boson and fermion annihilation and creation processes. In an appendix, we extend 
the scheme to take account of Poisson processes. 

1. Introduction 

There has been much recent work (e.g. [l-7]), on the application of quantum stochastic 
calculus to the theory of dilations of norm continuous dynamical semigroups on von 
Neumann algebras. The physical motivation behind this is as follows: suppose that 
So is a quantised system undergoing an irreversible evolution through a quantised 
‘noise bath’ SI (to which it is singularly coupled). We aim to extend the dynamics of 
So to a reversible dynamics of the combined systems So + SI .  Quantum stochastic 
calculus carries out this programme by providing a source of unitary cocycles for the 
free evolution on SI (at least in the case where S ,  may be described either exactly, or 
by means of an appropriate approximation, by a suitable Fock space [7]). The cocycles 
are obtained as the solutions of stochastic differential equations with respect to a 
quantum Brownian motion process [ 1,3]. 

The quantum Brownian motion process is a family of pairs of annihilation and 
creation operators, together with a cyclic vector to determine expectations, acting on 
either boson or fermion Fock space. The annihilation and creation components of the 
process describe random absorption and emission (respectively) of quanta of S ,  by 
So. In the case where the rates of absorption and emission are equal, no overall 
quantum effects are detectable and the process reduces to a classical Brownian motion 
process (SI bosonic) or its anticommuting analogue, the Clifford process [ 81 ( S ,  
fermionic). We note that in this paper, the classical and Clifford processes always 
arise as momentum field observables. 

Our aim in this paper is to use the techniques of quantum stochastic calculus to 
construct dilations of a particular case which we feel to be of some physical interest- 
namely when So is a two-level system described by the Bloch equations and S ,  is 
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938 D Applebaum 

either bosonic, fermionic or, finally, a combination of both coupled independently to 
so. 

The organisation of the paper is as follows. In 0 2, we give a brief summary of the 
role of bosonic stochastic calculus in the construction of dilations. (We stress that our 
discussion is a limited one-a thorough exposition may be found in [4].) The gauge 
process is omitted from the main part of the paper and dealt with separately in an 
appendix. We include some account of stationarity in order to stress the different 
possibilities available in the finite temperature case and to make direct contact with 
the extensive dilation theory of Kummerer and Schroder ([9-12) and references 
therein). 

In $9 3 and 4 we study the Bloch equations using bosonic stochastic calculus. An 
explicit computation of relaxation times and equilibrium values of the Pauli spin 
matrices is made, in terms of the parameters describing the stochastic coupling of SO 
to SI .  We extensively study the equations in standard form [ 131 and classify all possible 
bosonic dilations in terms of the ‘quantum diffusion equation’ determined by the 
relevant unitary cocycle. 

In $ 9  5 and 6, we carry out the same programme for the case of fermionic S I .  It 
turns out that the fermion stochastic calculus developed in references [3,14] is not 
quite general enough for our purposes, owing tu  unnatural parity assumptions on the 
stochastic integrals; we remedy this situation in § 5. We remark that the dilation 
schemes for the standard form in the bose and fermi cases are of identical structure; 
however, the stochastic processes associated with their quasi-free relaxations are 
markedly different. We suggest that this lack of symmetry is due to the fermionic 
nature of So. 

We conclude, in 9 7 ,  by combining the analyses of 99 4 and 6 to study the dilations 
of the standard form into a combined boson and fermion ‘noise bath’. Note that from 
a physical viewpoint, no loss of generality is involved in treating the equations in 
standard form [13]. 

The main results of the paper are the following. 
( i )  The relaxation times and equilibrium values are both inversely proportional to 

the temperature of a bosonic ‘noise bath’. In the fermionic case, the equilibrium values 
are again inversely proportional to the temperature but the relaxation times are constant. 

(i i)  The most general dilations of the Bloch equations in standard form into a 
combined bose and fermi ‘noise bath’ are given by the following two (mutually 
exclusive) possibilities. In either case, the quantum diffusion equation describing the 
dilation is generated by four independent processes, two of which are given by a 
classical Brownian motion process and a Clifford process. The other two are, in the 
first case, a pair of boson and fermion absorption (field annihilation) processes and 
in the second case, a pair of boson and fermion emission (field creation) processes. 

Dilations of the Bloch equations, using different techniques, have been constructed 
in references [9, 10, 151. (The dilation of [15] is clearly inequivalent to those discussed 
herein since it violates the Markov property [ 101.) Physical applicability of Markov 
dilations is discussed in [7]; for a criticism of this programme see [16]. 

We employ the following notation. 
Let h be a complex, separable Hilbert space and 6 be its dual. For T a densely 

defined operator on h, we define the operator T on 6 by 

Tf= whenever f lies in the domain of T. 
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Tt will denote an  operator on h, adjoint to T B ( h )  will denote the algebra of all 

For S, T E  B ( h ) ,  we denote the commutator 
bounded, linear operators on h. 

[ S ,  TI = S T -  TS 

and the anticommutator 

{S, T }  = S T +  TS. 

(Ad U ) X  = UXU' 

For U a unitary operator in h, we write 

( X  E N h ) )  

R' = [O, CO). 

2. Quantum stochastic calculus and dilations of dynamical semigroups 

Let h, be a complex, separable Hilbert space and r B ( L 2 ( W ) )  denote symmetric Fock 
space over L*(R). Let f i B = ( l , O , O , .  . .) be the vacuum vector in rB(L2(k!)) and for 
eachL g E L2(W), let a(f), a ' ( g )  denote the (boson) annihilation and creation operators 
(respectively) acting on r B (  L ~ ( w ) ) .  For each t E R+, write 

A, = ~ @ a ( x [ o , , ) ) ,  A: = m a ' ( x [ O , f J  

these being mutually adjoint, densely defined operators on hB = ho@rB(L2([W)) .  
Let w, be an  arbitrary state on B( h,), 0:: denote vacuum expectation on B(rB( L2(W)) 

and w be the state wo@w:: on B(hB). 
The family {(A!, A:), t E W'} together with the state w are a quantum Wiener 

process? of variance 1 in the sense of [17]. 
Let L= Lo@Z and H = Ho@Z be operators in B(hB) where Lo,  H,E B(h,) with 

Ho = HA. It was shown in [ l ]  that the quantum stochastic differential equation in hB 

d U, = U,[ L dA, - Lt dA:+ ( i H  -4 LL') d t ]  

U, = z 

has a unique solution with each U,( t E W') a unitary operator on h,. 

linear extension of the prescription 
The vacuum conditional expectation E: : B( hB) - j (  B( h,)) is given by continuous 

E,B(XO Y )  = j ( X ) w E (  Y )  

= j ( x ) ( f i B ,  y f i B )  (2.2) 

where X E B( h,,), Y E  B(rB(L2(W)) and j : B( h,) - B ( h B )  is the canonical injection 
j ( X )  =X@Z. 

It was found in [ I ]  that the formula 

P'(X) =j-1 0 E:( U , j ( X )  U:)  for X E B( h,) (2.3) 

t Also called quantum Brownian motion [ I ] .  
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defines a quantum dynamical semigroup P' = exp( tY) on B(  ho) ,  i.e. a one-parameter 
semigroup of norm continuous, identity preserving, completely positive maps of B( h,) 
into itself, with generator given by 

(2.4) T ( X )  = i[Ho, XI + L,XL; - f { L,,L;, X }  
for X E  B ( h o )  (cf [ I S ] ) .  

For each t E R, we denote by S, the shift in L2(R) defined by 

(S,f)(s) =f(t - s) .  

{St,  ER} is a unitary group on L2(R), which lifts, through the functorial properties 
of second quantisation, to a unitary group { r B (  s,), t E R} on r B (  L'(R)). 

From the cocycle property 

U,+, = U,%( U, )  (2.5) 
for s, t E R t  established in [2] where a ,  =Ad( IOT, (S , ) )  we see that {cf, [ER} is a 
group of automorphisms of B(hB) where for Y E  B(hB) [4 ,6]  

? " ( Y ) = A d  U , ( a , ( Y ) )  when t 2 O  

when t < 0. = a , (Ad  UT,( Y ) )  
For Y = j ( X )  with X E B(h,) and t E R' we have 

j - '  0 E:(@,( Y ) )  = j - '  0 lE:(Ad U,( Y ) )  

= P ' ( X )  

whence, for each t E R', the following diagram commutes: 
P' 

B(h0) - N h O )  '1 ~, p..: 
B ( h B )  - B ( h B )  ' 

We say that (B(hB),  Pf, j - ' o E , " )  is a bosonic stochastic dilation of ( B ( h o ) ,  Pr).  
We retain this terminology in the case where hB = ho%, H where H is isomorphic 

to symmetric Fock space over a direct sum (possibly infinite-see 123) of copies of L2(R). 
For t E R, we define a family of injections j ,  : B(h,) + B(hB) by the prescription 

j , ( X )  = (Pr 0 j ) x .  (2.7) 
We note that the triple (B(hB), { j , ,  t E R}, w )  is a quantum stochastic process in the 
sense of [19] and [7]. Furthermore, writing X ,  = j , ( X )  for t E R + ,  we obtain the 
stochastic differential equation [ 11 

dX,=[L,,X,]dA,-[L:,X,]dAT+Y(X,)dt (2.8) 
where L, =j,(L,)  and 2 ( X f ) = j , ( 2 ( X ) ) ( t ~ R + ) .  

An extension of the above theory has been developed by Hudson and Lindsay 
([20-221) using the quantum Wiener process { A ? ,  A?'; t E R'} of variance U' = cosh 2 4  
(4  > 0) in the state G = w o O o ,  whefe U, is an extrema1 universally invariant quasifree 
state [23]. We realise the process in h B  = hoorB(L'(rW))orB(L*(rw)) via the prescription 

A? = cosh 4( I O  a(,yI,,,,)O I )  + sinh d( IO  ZO cii(G) 
with w4 acting as ( f i ~ @ f i ~ ,  * a ~ O f i ~ )  where fiB is the vacuum vector in rB(L2(w)) .  
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With appropriate modifications all of the theory discussed above carries ovef to 
this case. In particular E t  is defined by substituting W+ for wn in (2.2), P '=  
Ad(l@rB(S, )@rB(s) )  and (2.1) and (2.4) now take the forms 

dU, = U , ( L d A ~ - L ' d A ~ * + ( i H - f c o s h '  4LL'-isinh2 4L'L)dt) (2.9) 

(2.10) 
Y( X )  = i[ H o ,  XI + cosh' 4(  LoXLA - ;{LOLA, X } )  + sinh' 4 (  LAXLO - f {  LiL0, X } ) .  

In (2.10) we may write, for p > 0 

( p  may be interpreted as an inverse temperature). 

automorphism group { ur ; t E R} satisfies 
If there exists a faithful normal state o0 on B(ho) whose associated modular 

(2.11) 

where A E R ,  for all t E R, we deduce from (2.10) and (2.11), by theorem 4.2 of [24] 
that P' satisfies the quantum detailed balance condition of [25] with respect to wo and 
furthermore that the state 6 = w0@w+ is stationary on B(hB) in the sense that 

(+r ( Ho) = HO U, ( Lo) = exp( $A t )  Lo 

- 1 .  
W O p f = ;  

whence, by (2.3), we find 

WO 0 P' = WO. 

We conclude that (B( iB) ,  g', G,j- '  0 E t )  is a stationary stochastic bosonic dilation 
of (B(ho), P', w o )  as can be seen from the commutativity of the diagram 

P' 
(Who) ,  WO) - (B(ho), WO) 

j - l  n E; T 
(~(i~), 6). 

The general theory of stationary dilations on von Neumann algebras has been 
extensively studied in [9-121 (see also references therein). We will say that a bosonic 
stochastic dilation is of zero temperature if the cocycle U, satisfies (2.1) (i.e. /3 =CO) 

and of finite temperature if U, satisfies (2.9) (i.e. p <m). 
We remark that the most general form of the generator of a quantum dynamical 

semigroup is given by [ 181 

(2.12) 

where the number of Lj E B(ho) may be infinite, provided Z j  LjL: converges in the 
strong topology on B(ho) .  Dilations of such semigroups have been constructed in [2] 
by means of quantum stochastic calculus. 

For the purposes of this paper, the greatest degree of generality we wish to consider 
is when the sum in (2.12) is finite, but each Lj arises from a qualitatively different type 
of noise. Our results may then easily be extended to the most general form of (2.12) 
using similar techniques to those of [2]. 

Z ( X )  = C  ( L , X L T - ~ { L , L ~ + ,  X)+i[H, XI) 
j 
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3. Bosonic stochastic Bloch dilations and relaxation times 

Fix h, = C2 so that B(  h,) = M2(C) .  We introduce the Pauli matrices 

Let p be a density matrix in M2(C) .  We define the polarisation components 

Mx(  t )  = Tr pP'(u,) 

A 3 ,  E , ,  E ~ ,  &)ER such that 

M,,(t)=TrpP'(u,)  M,( t )  = Tr pP'(u,). 

These are said to satisfy the Bloch equations [26] whenever there exist w, A , ,  A 2 ,  

dM,(t)/dt=wM,(t)-A,(M,(t)-&,Z) 

dM,( t ) /dt  = -CUM,( t )  - A2(M,( t )  - ~ 2 1 )  (3.1) 

dM,( t) /dt  = -A,(M,(t) - E ~ Z ) .  

We interpret w as a Larmor frequency and A j ,  E, ( j  = 1,2,3) as inverse relaxation 

A bosonic stochastic dilation of ( M 2 ( C ) ,  P') satisfying (3.1) will be called a bosonic 

We begin by considering the situation in which the equations are purely dissipative 

times and equilibrium values in the x, y and z directions respectively. 

stochastic Bloch dilation. We restrict ourselves first to the zero temperature case. 

(i.e. w = O ) .  In this case a sufficient condition for (3.1) is given by 

~ ( c T , )  = - A ] ( u ,  - ~ ~ 1 )  z( U,) = -A2( U,, - E ~ Z )  T(u,) = - A 3 ( u z  - ~ 3 1 )  

(3.2) 

where 2 is of the form (2.4) with H,=O. 
Since 2 ( Z )  = 0, we may write (3.2) in the symbolic form 

2( T ] )  = -A]T, ( j  = 1,2,3) (3.3) 

where T ]  = U, - E , Z  etc. 
We investigate the conditions under which (3.3) holds. 
Let 9?2={(:  ; ) € M 2 ( C ) ;  a6=cd, aE=bd,  adEIW, bEER}. We write Lo=(;  g ) ~  

M 2 ( C )  in (2.4). 

Proposition 1 .  A necessary and sufficient condition for (3.3) to hold is 

Lo€ 3 2 .  

Furthermore, in this case we obtain 

A1 =+( 1 1 ~  - 612+ I P - ? I 2 )  
A 2  = i (  la - 612+ I P + ? I 2 )  
A 3  = I PI2+ Id2 
&,=(2/A,)(Re aY-Re a@ 

E ~ = ( ~ / A , ) ( I ~  aY+Im ap) 

E 3 =  (1/A3)(lY12-lP12). 

(3.4) 

(3.5) 

(3.6) 
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The proof is by straightforward computation. 

Remark. Let ?A2(R) = 9?2n M2(R). It is easy to see that 9?2(R) is a semigroup under 
matrix multiplication. Furthermore, the set of non-singular elements of 9?2(R) are a 
closed subgroup of GL(2, R). 

Let C, denote the symmetric group on {1,2,3}. From (2.5) we obtain, for every 
g E x 3  ~ 7 1  

+ A,(,, 2 h 3 ,  . (3.7) 
We return now to the most general form of (3.1) with w # 0. Let us suppose that 

we have, generalising (3.2) 

L ? ( u ~ ) = ~ u ~ - A ~ ( u ~ - E ~ I )  

2?( cy) = -wvx  - A 2 (  uY - E ~ I )  (3.8) 
L?(u~)  = - A ~ ( u , -  € 3 1 )  

where we have taken Ho = 4 muz in (2.4). 

Hamiltonian parts of 2 commute. From (3.8) we see that this is so if and only if 
Equations (3.8) are a sufficient condition for (3.1) if and only if the dissipative and 

A i  = A 2  and E ,  = E 2  = 0. 

When this is the case, we say that the Bloch equations (3.1) and any bosonic 
stochastic dilation of the correspondent semigroup are in standard form [ 131. We will 
investigate this case in more detail in the next section. 

We conclude this section by generalising proposition 1 to the finite temperature 
case. Taking 9 as in (2.10) (with Ho=O) we obtain once again the condition (3.4) 
and the following values for the parameters: 

A f ’  =+U’( la - 612+ Ip - ?I2) 
A f = 4 a2( I Q  - SI2 + I /3 + ? I 2 )  
A,” = u 2 ( y 2 + p 2 )  

&f’=(2/Af)(Re ay-Recrp)  

E $  = (2/A$)(Im a p + I m  a y )  

E,” = ( 1 / ~ 9 ( M 2 - M l 2 ) .  
Comparing (3.5) and (3.9), we obtain 

A: = u 2 A j  

(3.9) 

(3.10) 

and (3.6) and (3.10) yield 

&,” = (1/(+*)&,. 

Now the variance 

u2 = cosh2 4 + sinh2 4 
=(1+e-8)/(1-e-8) 

= coth f p a p - ’  

(3.11) 

(3.12) 

whence we conclude from (3.1 1) and (3.12) that the relaxation times and equilibrium 
values are both inversely proportional to the temperature of the dilation. 
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4. Bosonic stochastic Bloch dilations in standard form 

Throughout this section, we will for simplicity restrict our analysis to the zero tem- 
perature case. It is easily verified that this involves no significant loss in generality. 

The Bloch equations (3.1) in standard form are 

d M x ( t ) / d t =  dkf , ( t ) -AM,( t )  

dM, , ( t ) /d t=  - w M , ( t ) - h M , ( t )  (4.1) 

dM,(t)/dt=-cL(M,(t)-&I) 

where we have written A = A ,  = A,, p = A 3  and E = E ~ .  

We see from (3.5) that 

A , = A 2  if and only if p = O  or y=O. (4.2) 

T, = A - '  = 2(Ip12+la -sI2)-' 
Let us, without loss of generality, take y = 0. We introduce the transverse relaxation time 

and the longitudinal relaxation time 

TI, = p-' = 1 
These clearly satisfy the relation [28] 

Til B f TL . (4.3) 

It is remarked in [27] that (4.3) is always satisfied experimentally. 
We will now make an explicit study of bosonic stochastic dilations of (4.1). Any 

Lo€ M2(C) may be written 

L o = a a a t + p a +  y a t + ~ a t a  

where a, p, 'y, S E C ,  

a=( '  ') and 0 0  
0 0  

We note that 

a2 = ( a y  = 0 and {a, U + }  = I. 
Using the notation of 9 2, we write a, = j r ( a )  and explicitly compute the form of 

(2.8) to obtain 

da, = { ( a  - S ) U ,  - y [  U , ,  U : ] }  dA, - {( 5 - b ) ~ ,  - p[ U , ,  U : ] }  dA: + O( a,)  dt. (4.4) 

We have not written out the dr term fully since it plays no role in our subsequent 
analysis. We remark that (4.4) defines a quantum diffusion process of similar type to 
those investigated in [29]. 

Now let 4 = arg(a - S ) ,  p ' =  e-"p and y ' =  ePi4y. Since the quantum Wiener 
process is invariant under the action of the gauge group U ( l )  [26] given by 

A: + e-"A: A, + ei4A:, 

we may transform (4.4) into the equation 

da ,= i la -S]a ,  dP,-y'[a,, a:]dA,+p'[a, ,a: ]dA:+Lf ' (a , )  dt (4.5) 

where P, = +Ar -A:) ( t  E W). 
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Let % = {f : R + R, f(0) = 0 and f continuous} and let p denote the Wiener measure 
on %. We realise the classical Brownian motion process { X , ,  t E R'} on % by 

= A t )  ( t  E R'). 

There is a unique Hilbert space isomorphism D (called the duality transform [30]) 
from r,( L2(R) )  to L2( %, p )  such that for each t ER', 

DP,D-' = x,. (4.6) 

Now, by (4.2) and (4.4) there are three possible forms for (4.5) when the dilation 
is in standard form, i.e. 

da,  = - y'[a,, a:] d A , + Z ( a , )  d t  
da,  = + p'[ a,, a:] dA: + LE'( a,) dt  

da,  = i/a - ala, dP, + LE'( a,) dt. 

We consider each of these cases in turn. 

(i) d a , =  -y ' [a , ,  a : ]  dA,+(iwa,-fly12a,) dt. 

(4.7a) 

(4.7 6 )  
(4.7c) 

(4.8) 

In this case the cocycle for the group dilation satisfies the equation 

dU' ;=  U!j[(y'a'dA,-y'a dAT)-t(ly'12ara-io[a, a ' ] )  dt ]  (4.9) 

an explicit solution of which may be calculated using the technique of [6]. 
We compute the semigroup Pi = e'2r dilated by (4.9) and obtain for 

A = ( aI2) E M2(C) 
a21 a22 

(4.10) 

Putting w = 0 in (4.10) yields an example of the quasi-free relaxation introduced 

(ii) This is very similar to (i), with equations (4.8)-(4.10) replaced by 
in [9]. 

da ,  = p' [a , ,  a : ]  dA:+(iwa, -$ lp '12u,)  d t  

d U f =  U ; j [ ( P ' a  d A , - p ' a t  dA~-f( lP '12aat- iw[a,  a t ] )  dt]  

(4.11) 

(4.12) 

(4.13) 

respectively; (4.12) is explicitly solved in [6]. With w = O  in (4.13) we again obtain a 
quasi-free relaxation. 

(iii) By virtue of (4.6) we can consider this case as an equation in ho@L2(%, p )  

da, =ila-SIa,  dX,+(iw-f(a-612)a,  d t  (4.14) 

the solution of which is 

a, = j ( a )  exp(ila - 61X, +iwt) (4.15) 

and a cocycle for the dilation is 

US=exp[ij([a, a+])(f ia  - ~ l x , + w t ) ] .  (4.16) 
(We remark that this is a special case of a structure developed in [31].) 
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The semigroup is 

exp[-(+/a - 812-iw)t]a12 
P:(A) = 

a22 
(4.17) 

which is an example of the Larmor relaxation of [9] (see also [12], particularly the 
theorem on p 237). 

From (4.10), (4.13) and (4.17) we see that the semigroups satisfy the following 
commutation relations: 

[PL, Pi] = [P:, Pi] = 0 [P;,P;]fO V t  E R+. (4.18) 

We introduce the dynamical semigroups 

P' , ,=P:oP;  P' , ,=P' ,oPi .  (4.19) 

Let JvB= c ~ @ L ' ( % ,  p)@rB(L2(&?)) and j be the canonical injection of M,(c) into 
B(KB). We denote by E; the conditional expectation on C 2 @ L 2 ( % ,  p )  with respect to 
Wiener measure and {Y,, t E R} the unitary group of shift operators in L2( %, p )  i.e. 

9, = Dr(s,)D-' 

f': =Ad( UCY,), t 3 0  

= Ad(Y,U'_,), t < O  

V t  E R. 

We define 

whence we see that ( B ( C 2 @  L2( %', F ) ) ,  f'f, j - '  0 E;) is a bosonic dilation of ( B ( h , ) ,  PL), 
equivalent vi? D>o the bosonic dilation constructed in ( i i i )  with /3 = y = 0. 

We write P; , Pi ( t  E R), for the groups implementing the dilations of P i ,  Pi ( t  E R') 
respectively discussed in ( i )  and ( i i )  above. 

Our main result of this section is the following theorem. 

Theorem 2. (B(XB), pL 0 pi ,  j - '  0 E: 0 E;) and ( B(MB), 6: 0 f';, j - '  0 E: 0 E:) are bosonic 
stochastic dilations of ( M 2 ( C ) ,  P:;) and ( M 2 ( C ) ,  P&), respectively. 

The proof is trivial. (In the statement of theorem 2 ,  for n9tational convenience, 
we have omitted the canonical injections which extend E:, E;, PL, Pf and P; onto the 
whole of B(NB) . )  

In either of the two cases of theorem 2 ,  the underlying quantum stochastic process 
satisfies the corresponding stochastic differential equation (SDE) of (4.7). Thus we see 
that theorem 2 provides the most general description of the standard Bloch equations 
for a (zero temperature) bosonic dilation via quantum Brownian motion. 

The form of (4.7) suggests the following physical interpretation: that we regard the 
standard bosonic dilation as arising from the combination of a purely classical process 
(e.g. a random magnetic field) and a purely quantum process (e.g. a bosonic radiation 
field) interacting with the two-level system either by absorption or emission. 

In [27], the standard form was characterised in terms of rotational symmetry about 
the uz direction. We conclude this section by examining this result within the context 
of our dilation theory. 

Let G = (e""2, 0 E [O,  257)}.  G is a one-parameter subgroup of SU(2) which has a 
unitary representation on C2, acting on M 2 ( C )  by algebraic extension of 

(Ad Ve)a = eiea (Ad Ve)at=e-ieat 
for each Ve = eieq E G. 
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Theorem 3. The following are equivalent, for fixed Ho=ioa, in (2.4) and for all 
e E LO, 2 4 .  

(i) For each X E M 2 ( C ) ,  t E R+ 

Ad V, P'( X )  = P' (Ad V O X ) .  

(ii) Ad V,(Lo) = Lo. 
(iii) Ad j (  V,)( U,)  = U,, V t  E R +  
(iv) For each Y E  B (  h B ) ,  t E R 

Ad j (  V,)?( Y )  = @'(Ad j (  V,) Y ) .  

(v) The Bloch equations are in standard form. 

Proof: ( i )  is equivalent to 

Ad V, e'"(X) = er2(Ad V,X)GAd V & f ( X )  = 2 ( A d  V O X )  

(j V, ( L ~ X L :  - f L,L;X - t XL,L: + i[ H,, XI) v', (a) 

= L , v & v ~ , L ; - ~ L , L ~ v , x v I ,  -i V,XV',LoL;+i[Ho, v,xv~]. 
However, V,HoV?, = Ho ( 0  E [0,271)) whence V,[Ho, X I  VI, = [H,, V,XVi] so ( a ) e  

Lo = V,L, vt, 
(j the cocycle for the dilation is given by the solution of 

dU, = U , ( j (  V,)Lj (  V?,)  dA, - j (  V,)L*j( V i )  dAt 

+(U( V,)Hj( V i )  - i j (  V,)LLtj( VA)) d t )  with U,= I 

e d( U,j( V, ) ) = U,j( V, ) ( L d A, - Lt d A: + (i  H - 4 LLt ) d t with U,= I 

@ d ( j ( V , ) U , j ( V ~ ) ) = j ( V e ) U , j ( V ~ ) ( L d A , - L t d A :  

+ (iH - i LL' d t ) )  with j (  V,) Uoj( V i )  = I 
whence by the uniqueness theorem for solutions to equation (2.1) [ l ]  we conclude 

j (  V,) U,j( V i )  = U, V t  E R ' a V t  E R+, Y E  B(  h B )  
Ad j (  V,)? ( Y )  

= j (  v,) Uta,( Y )  U:j(  VL) 

= U,j( v,)a,(  Y) j (  v:) U: 

by (2 .6)  

= U,a,(Ad j (  V,) Y )  U,' 

= @'(Ad j (  V,) Y ) .  

The corresponding statement for r < O  follows by adjunction in (iii). 
(v)  is true if and only if (4.5) takes the forms 

d a , = i l a  -Slur dP, -e-',y'[a,, a: ]  dA,+e-'ep'[a,, a: ]  dA:+2(u,)  d t  

da,  =ila -Slat dP, - y'[arr a:]  dA,+p'[a , ,  U : ]  dA:+Z(a,)  dt. 

(b) 
and 

(c) 
In (b) we can absorb one of the e-', factors by making either of the gauge 

transformations A, + e-iSA,, A, + eieA,. In the first case (b) and (c) are e q u a l e  jp = 0 
and in the second case e y = 0 (the only other possibility for equality is jp = y = 0). 
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Let %e = Ad Ve and %; = Adj(  Ve) ( 0  E [0,27r)). Theorem 3, for the given choice 
of H, demonstrates that the Bloch equations are in standard form if and only if G 
induces a one-parameter group of symmetries of the dilation in the sense that all 

( B (  h,), ("ul,)-'k'( "U;), j - '  0 E:) is a bosonic stochastic dilation of ( M 2 ( C ) ,  
e E [o, 2v) .  

% ;IP'%@). 

5. Fermiodc stochastic dilations 

We recall the following definitions and notation from [32] and [3]. 
A complex separable Hilbert space X is said to be 2,-graded if it may be written 

X= X + O X - .  
We refer to X+ and X- as the even and odd subspaces (respectively). T E  B ( X )  is 
said to be even if lXAc X* and odd if lX,c Xz whence we see that B ( X )  is a 
Z,-graded algebra in the sense of [33]. 

We denote by p the parity automorphism of B ( X )  for which 

p ( T )  = T if T is even 

p ( T ) = - T  if T is odd. 

p is unitarily implementable by a self-adjoint unitary operator 0 on X satisfying O 2  = I .  
Let XI,  X 2  be Z2-graded Hilbert spaces and X = XI 0 X 2 .  Clearly X is Z,-graded. 

Let $( E XI and T, E B( XI) ( i  = 1,2) with 
The Chevalley product TI 6 T2 is defined by continuous linear extension of 

and T, of definite parity. 

( ~ , 6  ~,)(4~04,) = ( - i ) s ( r 2 z ) E ( I L  ' TI $1 0 T292 (5.1) 

= sgn e$, . Equation (5.1) extends by linearity to where S (  T2 )  = sgn p (  T2) and 
the case where T2 is an arbitrary element of B ( X 2 ) .  

For SI, T, E B ( X , )  ( i  = 1,2) with S2 and TI of definite parity, we have 

( S , 6  S,)( TI& T2) = (-l)6(s2j6(rJsl T , 6  s 2 2  T (5 .2 )  

which, again, extends by linearity to the case of arbitrary Sz, TI. 
Let rF(L2([w)) denote antisymmetric Fock space over L 2 ( R ) .  It is 2,-graded by 

means of its decomposition into direct sums of odd and even antisymmetric tensor 
powers. For f, g E L2(R), let b(f) and bt(g) denote the (fermion) annihilation and 
creation operators (respectively) acting on r F (  L'(R)). These are clearly odd operators. 
We write p' = Ad 6' for the panty automorphism of B(rF( L2(R)))  and OF = (1,0,0, . . .) 
for the vacuum vector in rF(L2(R)). 

Let h, be a complex, separable &-graded Hilbert space and let po = Ad Bo denote 
the parity automorphism of B(ho) .  We write h ,  = ho@rF( L2(R)). Clearly the parity 
automorphism p = Ad 8 of B(hF) is given by p = po@p' .  

Let L : B (  h,) + B( h F )  denote the canonical injection given by L (A)  = A 6  I (A E 

B ( h o ) ) .  The vacuum conditional expectation E r :  B(hF)+ 6(B(ho))  is defined as in (2.2) 
with L and OF replacing j and Q, (respectively). 

Let B,=I&Ibb(X[o,r,), B:=16bt(Xro,rj) ( ? E R + )  and.w'=w,Ow; where wo is an 
arbitrary state on W h o )  and w: is vacuum expectation on rF(L2([w)). The family 
{ ( E t ,  BI) ;  t E Rt} together with the state U'  yields a fermion Brownian motion process 
of variance 1 in the sense of [34]. 
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Fermion analogues of (2.1) and (2.3) were developed in [3]. However the dilation 
theory so obtained was limited by the proviso that Lo and Ho be odd and even elements 
of B( h,), respectively; consequently only even cocycles were admissible. 

The following sequence of propositions provides the relevant generalisation of 
theorems 5.2, 6.3 and 7. l (b)  of [3]. In each case, the proof is a straightforward 
modification. 

We refer the reader to [3] for the definitions of adapted process, locally square 
integrable process and stochastic integral. 

Let d denote the set of adapted processes { M,, t E R+} in h, satisfying 

dM, = dB:F, + G, dB, + H,  dt  

with {F , ,  t E R+}, { G,, t E R'} and {H, ,  t E Rc} locally square integrable processes such 
that 

Mr, Ft, Gr, Hr E B(~F) 

sup max{IIMsll, llFsll, IIGII, IIHsll}<~ 
and 

o r s s r  

for each t E R+. 

Proposition 4. d is a *-algebra under pointwise operator multiplication and the 
involution M, + Mr( t E R+). Furthermore, for {MI( t ) ,  t E Rt) E d ( i  = 1,2)  with each 

dMi  = dB:Fi+ GI dB, + H f  d t  

we have 

d(M:M:)=dM:M:+Mi dM:+dM:dMf 

where 

d M  :M:  = d B: F: M: + Gf p (  Mf) d B, + H :  M: dt  

M:dM:=dB:p(M:)F:+M:GfdB,+M:H:dt 
dM: dM: = G:F: dt.  

Proposition 1 is Ita's formula in hF.  It generalises theorem 4.2 of [3] to the extent 
that {M:, t E R+}, i = 1,  2, are no longer required to be of definite parity. 

Proposition 5. For arbitrary Lo, Ho E B( h,), with Ho = HA, there exists a unique solution 
to the stochastic differential equation 

d V, = V,( L (  Lo) d B, - p(  L (  LA)) dBf)  + [ i L (  Ho) - 5 L (  LOLA)] d t )  

v,= z (5.3) 

such that each V, is a unitary operator on hF ( t  E R+). 

Proposition 6. The family of maps {Si,, t ER+} from B(h,) to B(h,) given by 

9 ' ( X )  = L - I  0 E:( V, ' (X)  v:,, t E R i  (5.4) 
for each X E B( h,) is a quantum dynamical semigroup on B(h,) with generator given 
by 

A ( x )  = i[Ho, x] + LoeoxeoL~ - 4 { L&, x}. (5.5) 
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Let { p, ,  t E R} denote the unitary group of automorphisms of B( hF) given by 

p, = A ~ ( I ~ ~ F ( s , ) ) ,  ? E R  

where rF is the fermion second quantisation functor. 
The cocycle property 

v,, = v s  P s  ( V,) (5.6) 

follows by a slight generalisation of the proof of theoreAm 8.1 in [14]. 

of (1.6) with V,, p, rep1a:ing U,, a, (respectively). 
Hence we obtain a unitary group of automorphisms 9‘ of B ( h F )  by the prescription 

We say that ( B ( h F ) ,  9,, L - ’  0 E!) is a fermionic stochastic dilation of ( B (  h,) ,  9‘). 
As in the boson case, we will retain this nomenclature in the case where hF is of 

the form h,O X with X isomorphic to antisymmetric Fock space over a direct sum of 
copies of L’(R).’ 

Let { ( E $ ,  B:’), 1 E Rf}  denote fermion Brownian motion of variance U’ = cos 25 
(6 E [0, 7r/2]) in the state ;‘= w , O w f  where is an extrema1 universally invariant 
quasi-free state on B(rF(L2(&t))). 

The process may be realised as operators in iF= hoOrF(L2(R))@TF(L2(R)) via 
the prescription 

with wf acting as (SZ,OCL~, . nF@iiF) where iiF is the vacuum vector in rF(L2([w)). 

equations for the cocycle and semigroup generator being 

d V, = V,[ ~ ( ~ 5 0 )  dB$ - L (  p o ( L i ) )  dBft  

The analogues of (5.4), (5.5) and (5.6) in this context were obtained in [35], the 

+iL(Ho) - 4  cos2 &(LOLA) - f  sin2 &(po(LALo)) dt] (5.7) 

A(x)=~[H, ,  x ] + c o s 2  ~ ( ~ o e o x e o ~ o - ~ { ~ ~ ~ ~ , x } )  

+ sin2 t( eo L A ~ L ,  eo - f { eoL: L, e,, x } 1. (5.8) 

In (5.8), we may write for p > 0 

cos2(= 1/(1+e+),  sin2 5 = e-@/( 1 +e+)  

which indicates the possibility of constructing stationary fermionic stochastic dilations 
in an analogous way to 0 2. 

We will say that a fermionic stochastic dilation is of zero (finite) temperature 
whenever the cocycle is a solution of (5.3) ((5.7)). 

In the zero temperature case, we define a family of injections { L , ,  f E W} from B( h,) 
to B ( ~ F )  by 

L ,  = 9 - l  0 L .  

Then { B ( h F ) ,  { L ! ,  t E R}, U’} is a quantum stochastic process and for each X E B (  h,) 

dX, = ~ , { ( L o ~ o ( x ) - x L o )  dB,+(XPo(L~)-po(LiX)) d B : + A ( x )  dt}. (5 .9 )  

We cannot simplify (5.9) in an analogous way to (2.8) because of the non-definite 
panty of U, (e.g. L,(dB,) # dB, in general). 
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6. Fermion stochastic Bloch dilations. relaxation times and standard forms 

Let ho = 62. We define a Z,-grading on ho by taking ho,+ and ho,- to be the linear spans 
of the vectors (A) and ( y )  respectively. 

Hence we may csnsider fermionic stochastic Bloch dilations of (M2(62),  9‘) where 
the semigroup 9‘ satisfies the equation (3.1) and has a generator of the form ( 5 . 5 )  or 
(5.8). We begin by taking w = 0 and obtaining the fermion analogue of proposition 
1, in the zero temperature case. 

Proposition 7. A necessary and sufficient condition for (3.3) to hold is 

Lo€ 3 2 .  (6.1) 

Furthermore in this case, we obtain 

A l  =+(la + 6 ) 2 + I P +  71’) 

(6.2) A -1 
2 - 2 ( I a  + SI2+ I P - 71’) 

A3 = I PI2+ IYI2 

.z2 = (2/A2)(Im ay - Im ap) 
E 3 =  (2/A3)(1712-lP12). 

E ,  =(2/Al)(Re @+Re G P )  

(6.3) 

We observe that the relation (3.7) again holds for the inverse relaxation times. 
denote the inverse relaxation times and equilibrium values, respectively, 

in the finite temperature case ( j  = 1,2,3). Repeating the computation of proposition 
7, we obtain the following fermion analogues of equations (3.11) and (3.12), for j = 1, 
2, 3 

Let A;, 

A; = A, (6.4) 

E; = U2E,.  (6.5) 

In this case, the variance is given by 

w2 = cos’ 6 - sin2 5 
= ( 1  -e-@)/(  1 +e-@) 

=tanhfpoCp.  

So, we see that, just as in the boson case, the equilibrium values are inversely 
proportional to the temperature of the dilation. In contrast to the boson case, however, 
the relaxation times are invariant with respect to temperature changes. 

We now investigate the standard form of dilation, in the zero temperature case, with 
Ho = fwa, in ( 5 . 5 ) .  To carry out our analysis, we need the fermion analogue of equation 
(4.5). 

Putting Lo= a = (E A) in (5.9),  we obtain 

d ~ ,  = ‘,{-[(a + 6 ) ~  + 711 dB, +[(G + b ) ~  - P I ]  dB:+A(u)  dt}. (6.6) 

Equation (6 .6)  generalises the fermion diffusion processes considered in [36], where 
a, was restricted to be an odd operator for all t E R+. 
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Putting 77 = arg( a + S), we make the gauge transformations B, + e’”B,, B: + e-’”B? 

Let P, = -i( B, - B:) ( t  E R+) then (6.6) may be written 
[ 141 and write y’ = e-’”y, p’ = e-’”p. 

da, = L,{-i/a + S1a dP, - y‘dB, -p’dB:+&((a) dt} (6.7) 

(cf equation (4.5)). 
Let d denote the von Neumann algebra in B(T,(L2(R))) generated by “(f)= 

a ( f ) -a ’ ( f )  ( f ~  L2(R)) and m be the tracial state on d obtained by restriction of 
vacuum expectation. There is a unique Hilbert space isomorphism E : I-,( Lz(R)) + 

L 2 ( d )  (the duality transform of [37]) such that for each t ER+, 
EP,E-’ = 0, (6.8) 

where 

0, = -iWxL0,,J. 
{0,, t ER’} is the Clifford process [8,38] in d. It plays the role of a fermionic analogue 
of the classical Brownian motion process. 

Inspection of (6.2) in the light of (6.1) indicates that there are three possibilities 
for obtaining a fermionic Bloch dilation in standard form. These are 

(i)’ f f = P = S = O  Y # O  

(ii)’ f f = y = S = O  P # O  

(iii)’ p = y = o ,  a, S # 0. 

(i)‘ da, = ~, [ -y’dB,+( iwa-$ly1~a)  dt]. (6.9) 

We examine each of these in turn 

The cocycle satisfies the equation 

d VI = V ~ L (  y’at  dB, + y’a dB: + f ( iw[  a, at]  - 1 y’12ata) d t )  (6.10) 

whence we see that each Vi is an even operator so (6.9) may be written 

da, = - ~ ‘ d B , + ( i w a , - i I y ‘ / ~ a , )  d t  (6.1 1) 

where a, = ~ , ( a )  ( t  E Rt). 
Making the gauge transformation B,H exp[i(arg y’- 7r/2)]B1 we may write the 

solution to (6.11) as the fermionic Omstein-Uhlenbeck process ([35], see also [39]) 

(6.12) a, = exp(iw - i ly12t)~(ao)  + (yI exp(iw - f l y 1 2 ) ( t  - 7 )  dB,. 

The semigroup is given by 

(6.13) 

for A = (z;; z;;) E M 2 ( @ ) ,  so this case describes a quasi-free relaxation. 

product integral’ in [ 141 
We remark that the solution to (6.10) is explicitly constructed as a ‘continuous 

(ii)‘ da, = ~, ( -p’dB:+( iwa-I Ip’ I~a)  dt. (6.14) 
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The cocycle satisfies the equation 

dVf = Vi‘( P’a  dB, + P’a’ dBj  + i ( i w [ a ,  a’] - 1  p’12aa’) dt).  (6.15) 

Again, each Vi  is an even operator so (6.14) may be written 

da,  =[-p’dB:+(ioa,  -~ iP ’12a, ) ]  dt. (6.16) 

Making the gauge transformation B, + exp[i(arg p ‘ -  7r /2 ) ]Br ,  we obtain as the 
solution to (6.16) the fermion Ornstein-Uhlenbeck process 

a, = exp[ (io - i 1 PI’) t ] ~ (  ao) + I pl lof exp[ ( iw - pi2)(  t - T ) ]  dB:. 

(6.17) 

The semigroup in this case is again a quasi-free relaxation, given by 

(6.18) 

(iii)’ Applying (6.8) we consider this as an equation in hoOL2(.d) 

da,  = L,[-i/a+G(a d@,+( iwa- i la+S/2a)  dt]. (6.19) 

A cocycle for the dilation is given by the solution of 

d Vf = V ; L [ ~  la + SI d@, + (iw[ a, a’] - a  la + 81’) dt] (6.20) 

which is 

vf = exp[tila + GI@,+iwL([a, a+])t] .  

Clearly, for t > 0, Vp is not of definite parity. 
The semigroup is given by 

a1 I exp[-(t/a + ~ 1 ~ - - i w ) t ] a , ~  
$ : ( A )  = 

(exp[-(ia+sI’+iw)r]o,, a 2 2  

and is a Larmor relaxation. 
From (6.13), (6.18) and (6.22) we obtain the commutation relations: 

[Si, 93 = [9a;, 9 3  = 0 

[9 ; ,9a ; I#o  

(6.21) 

(6.22) 

(6.23) 

for all t E [ W + .  
We define 9 ~ , = . 9 ~ ~ 9 ~ ,  9&=9L0.9:. 
Let NF = C2@ L2(.d)OrF( L 2 ( W ) )  and k be the canonical injection of AI2(@) into 

B(hF). We denote by E:, conditional expectation with respect to the tracial state m 
on B ( C ~ O  L ~ ( & ) ) .  

Defining the automorphism groups j;, 3i, 3; by analogy with their boson 
analogues in § 4, we obtain the following fermion version of theorem 2. 

Theorem 8. ( B(KF), 3: 0 3;, k-I 0 E: 0 E:) and ( B ( N F ) ,  3; 0 3;, k-’  0 E: 0 E:) are fer- 
mion stochastic dilations of ( M 2 ( @ ) ,  $LA) and (M,(@),  9L7), respectively. 

These dilations are described by the SDE obtained from putting p = O  and y = O  
(respectively) in (6.6). Since the group G is wholly contained in the even part of 
A I 2 ( @ ) ,  the validity of theorem 3 in the fermion case follows immediately. 
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7. The general quantum Bloch dilation in standard form 

From (4.10), (4.13); (4.17), (6.13), (6.18) and (6.22) we obtain the following commuta- 
tion relations, in addition to (4.18) and (6.23) 

[P:, st] = [PL, .a;] = [P:, 9;1= 0 

[.a:,, Pi] = [.a:,, P;] = 0 

[ P ; , 9 ; ] = [ P f , 9 ; ] = 0  

[P;, 9a;I+ 0, [Pi ,  9;1+ 0 Vr E R'. 

Equation (7.1) indicates the possibility of dilating the semigroups 

Q; = Pi0 9; 0 Pi 0 9; 

and 

Q; = Pto 9: 0 Pi0 9; 

(7.1) 

(7.2) 

using a combination of boson and fermion noises. 
We make the following definition, which generalises the boson and fermion struc- 

tures defined in 00 2 and 5 .  
Let ho be a &-graded Hilbert space and %, be isomorphic to the tensor product 

of symmetric Fock space over a direct sum of copies of L2(R) with antisymmetric Fock 
space over a direct sum of copies of L2(R). (The direct sums need not be of the same 
cardinality; however either or both of them may be infinite.) 

We write ?*, = h,O 2,. Let 1 : B( ho) + B( h,) be the canonical injection given by 
I (A)  = A O I B  0 IF where IB and IF are the identity operators on the symmetric and 
antisymmetric Fock spaces (respectively). Let E ,  be a conditional expectation from 
B ( h , )  to l ( B ( h , ) ) ,  {Q,, t ER+} be a quantum dynamical semigroup in B ( h , )  and {o,, t E R} be a group of automorphisms of B ( N , ) .  We say that ( B ( N Q ) ,  o,, I-' 0 E,) 
is a quantum stochastic dilation of ( B (  h,,), Q,) whenever the following diagram com- 
mutes for all t E R'. 

0, 
N h o )  - W h o )  

I I \ ! - ' .EP 

NJ,) - HN,) 
6, 

We take h, = Q: and 

JQ = C2 0 L2( %, /.b) 0 L 2 ( d )  0 x r,(L2(1w))or,(L2([w)). 
Let EQ = E: 0 E t  0 E: 0 E: and define, for t E R,  

A *  6; = 6; 0 $ao fi; 0 4; 6; = @; 0 sao p; 0 9; .  (7.3) 

The following result generalises theorems 2 and 8 and provides the most general 
quantum stochastic dilation of the Bloch equations in standard form via boson and 
fermion Brownian motions. 
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Theorem 9 indicates the need for a boson-fermion stochastic calculus to be 

Formally, we see that the relevant generalisation of the It6 product formula is given 
developed in the space ho@TB( L*(R)) OrA( L2(R)). 

by the following table 

dA dA’ d B  dBt  dr 

dAt 0 0 0 0 0 
dA 0 d f  0 0 0 
dBt 0 0 0 0 0 
dB 0 0 0 dr 0 
dr 0 0 0 0 0 

and for H,, KO, Lo€ B(ho)Ho= HL, unitary cocycles are obtained from the solution of 

d Ut = Ut{ I (  KO) d A, - I (  K h) d A: + I (  Lo) d B, - p ( I (  Lo)) dB: 

+ [ il( Ho)  - f I (  KoKh + LOLA)] d t } .  (7.4) 

To describe the situation in theorem 9, we require a further generalisation, i.e. the 
analogue of (7.4) in 

./”Q L2( %, p ) @  L2( &)or,( L2(R)) or,( L2(R)) 

= c2 o r B( L’(IW) ) o r B( L ~ ( R )  ) o r ,( L ~ (  R) ) o r,( L’( R)) 

= c20 rB( L’(R) o L ~ ( R ) )  o r,( L’(R) o L ~ ( R ) ) .  

Taking Ho = f uuZ ( w  E R), 

in (7.4) and splitting KO and Lo into their relevant summands, as in 994 and 6 ,  we 
find that the cocycles W: = Uf Vf U :  V /  and W! = Uf V:’ U! VJ giving rise to the unitary 
groups 0; and Qi, respectively are the solutions of stochastic differential equations 
in NQ; the corresponding boson-fermion diffusion equations are 

da;’=l:(ila-Sla dX,-i/K+vla d@,+P[a ,  a’]  dA: 

-A dB:+(iw - i ( l a + 6 ( 2 + l ~  + vl2+IPl’+IAI2))a d t )  (7.5) 

where 1; = 6; 0 1 ( t  E R+) and 

d a  1 = l!{ il a - 6 I a dX, - iI K + V I  a d@ , - y [ a, a ‘1 d A, - p d B, + [ i w - 4 ( I a - S 1 
+ IK + V I 2 +  IY12+ I CL12)la dt} (7.6) 

where I !  = 6; 0 1 ( t  E R+). 
The results of this section generalise easily to the finite temperature case where the 

possibility of constructing stationary stochastic dilations, using the techniques of 8 2,  
is available. 

The rigorous development of the boson-fermion stochastic calculus may be estab- 
lished using the general techniques of [40]. Details will be published elsewhere. 
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Appendix. Bloch dilations via Poisson processes 

We conclude this paper by examining the effect of introducing the gauge process of 
[ l ]  into our dilation scheme. 

For T E B(  L2(R)), we define the operator A (  T )  on r,( Lz(R)) through its action on 
the set of exponential vectors { $ ( f ) , f ~  L2(R)} 

The gauge process in h , ,  { A t ,  t E R'} is defined by 

At = I@A(Mx,o , t , )  

where Mx[o,rl  is the operator of multiplication by 
Let WO be a unitary operator on C2 so that 

exp[i( 4 + k)]  cos 7 
-exp[i(4 - p ) ]  sin 7 

for 4, k, p, 77 E [ O ,  271. Let W =  Wo@Z. 

exp[i( 4 + p ) ]  sin 7 
exp[i(4 - k)] cos 7 WO= ( 

By theorem 7.1 of [ l ] ,  there exists a unique solution of the SDE 

dU, = U,(( W- I) dii, + L dA, - WL' dA:+ (iH -+LL+) d t )  
( A4) 

U,= I 

with each U, a unitary operator in h , .  By imitating the argument of theorem 7.1 of 
[2], it is easy to see that these operators satisfy the cocycle condition (2.5). The 
prescription (2.3) again yields a quantum dynamical semigroup whose generator takes 
the same form (2.4) as that obtained by putting W = I in (A4) [l]. In general, therefore, 
the gauge process appears only to introduce an element of redundancy into our scheme. 
However a dilation of some interest is obtained by putting Lo= 1"2( WO- I) and 
H,=-i i (Wo- W:)+iuuz in (A3) for IER+.  

We thus obtain a cocycle satisfying 

d U , =  U, [ (W-Z)dn,+t iwj(u , )d t ]  (A51 

where {II;, t E R'} is the Poisson process of intensity 1 which satisfies the SDE [ l ]  

dn', = dA, + 8 (dA, + dA;) + 1 d t  

n;=0. 
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From (2.4), we find that U, yields a dilation of the semigroup whose generator is given 
by 

Z ( X ) = I (  W o X W ~ - X ) + i [ i w u z , X ]  ('47) 

for X E M 2 ( @ ) ,  which, we remark, may also be dilated via the cocycle satisfying 

d V , =  V, [d  W d A , - d  W'dA:-t(lZ-',iwj(a,))dt]. 

From (3.4) and (A7) we see that (A5) yields a bosonic stochastic Bloch dilation if and 
only if WO E %!2 .  From (A3) we obtain 

77 =+m.rr, k=inTr, p =+pTr 

where m, n, p E Z. Thus, we have four possible forms for WO. 
(a) m even, n even 

= 

In this degenerate case, the dissipative part of 2 in (A7) vanishes. 
(b) m even, n odd 

wo = 
( - 1 ) ( m+ n - 1 ) / 2 .  IUz. 

This is in standard form with parameters 

A l = A 2 = 2 1 ,  A3=0 and El = E2 = E 3  = 0. 

(c) m odd, p even 

wo = e i d ( - 1 ) ( P +  m - 1  112 
UY. 

This is characterised by the parameters A I  = A 3  = 21, A 2  = 0 and e l  = c2 = c3 = 0 and is 
in standard form only in the degenerate case I = 0, when the dissipative part vanishes. 

(d) m odd, p odd 

wo = ei4 ( -  1 ) ( p + m ) / 2  

In this case we have h2 = A 3  = 21, A ,  = 0 and c l  = = E~ = 0. Again, we have a standard 
form only in the degenerate case I = 0. For our purpose, the most interesting case is 
(b). The semigroup is given by 

U,. 

(where we have taken w =0)  and clearly commutes with each of Qf and 0;. Hence, 
we may extend the scheme of theorem 9 by introducing another copy of r B (  L2(R)) to 
accomodate the Poisson process of intensity I. Indeed, since the semigroups Pf,, 
commute for different values of I €  [0, a] we may introduce rB($fY=l L2(R)) to take 
care of a finite number of Poisson processes of different intensities I j ( f  jc N )  where 
N E N. The further extension, to a countably infinite number of processes, will be dealt 
with elsewhere. 
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The generators of the semigroups in (b), (c) and (d)  are, respectively, for A =  (z;; f;;) E M 2 ( C )  and taking o = 0, 

and these satisfy the relation 

T ( c ) ( ~ . )  -Lf(d)(A) = 2 ( b ) ( A t )  

for all A E M 2 ( C ) ,  where A‘ denotes the transpose of the matrix A, and the commutation 
relations 

T ( c , C , l  = [ye(b), L f ( d ) ]  = [Y(E)-  L f ( d ) 1  = 0. 
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